Abstract

Currently, low intimacy between hydrogenation sites and acidic sites causes unsatisfactory catalytic activity and selectivity for the synthesis of 2,5-hexanedione from C6 furan aldehydes (5-methylfurfural, 5-hydroxymethylfurfural). Herein, iodine(I) modification of Pd-supported catalysts (such as PdI/Al2 O3 and PdI/SiO2 ) was investigated to modulate the hydrogenation sites and acidic sites. Unlike Pd catalysts that produced 71.4 % yield of 2-hydroxymethyl-5-methyl tetrahydrofuran via an overhydrogenation route of 5-methylfurfural, PdI catalysts showed a high efficiency for 2,5-hexanedione with 93.7 % yield by a hydrogenative ring-opening route. More importantly, the selective synthesis of 2,5-hexanedione from 5-hydroxymethylfurfural with a high yield of 50.2 % by the hydrogenolysis and subsequent ring-opening route was reported for the first time. I-modified Pd nanoparticles produced in-situ hydrogen spillover, which promoted the selective C=O hydrogenation and ring-opening steps by regulating the adsorption configuration of the reactants and the transformation of Lewis to Brønsted acidity, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.