Abstract

Supercapacitors have the advantages of fast charging and discharging speeds, high power density, long cycle life, and wide operating temperature range. They are widely used in portable electronic equipment, rail transit, industry, military, aerospace, and other fields. The design and preparation of low-cost, high-performance electrode materials still pose a bottleneck that hinders the development of supercapacitors. In this paper, coal was used as the raw material, and the coal-based porous carbon electrode material was constructed using the iodine intercalation-assisted activation method and used for supercapacitors. The CK-700 electrode exhibits excellent charge storage performance in a 6 M potassium hydroxide (KOH) electrolyte, with a maximum specific capacitance of 350 F/g at a current density of 0.5 A/g. In addition, it has an excellent rate performance (310 F/g at 1 A/g) and cycle stability (capacitance retention up to 91.7 % after 30000 cycles). This work provides a method for realizing high-quality, high-yield and low-cost preparation of coal-based porous carbon, and an idea for improving the performance of supercapacitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call