Abstract
MXene has attracted a wide spread attention as promising supercapacitor electrode materials owing to excellent electronic conductivity and reversible surface redox capability. In fact, the supercapacitor performance strongly relies onsurface terminations of MXene. However, regulating the types of surface terminations for enhancing the electrochemical performance of MXene is still one of major challenge. Herein, we successfully prepared a MXene containing iodine terminations (I-Ti3C2 MXene) by facile Lewis-acidic-melt etching method and comprehensively investigated its supercapacitor performance. Benefiting from the presence of iodine terminations, the I-Ti3C2 MXene with pseudocapacitor property exhibits significantly higher specific capacitance than that of hydrofluoric acid etching MXene (HF-Ti3C2Tx MXene). Impressively, the I-Ti3C2 MXene shows extraordinary long-term cyclic performance, even when cycled at high current density of 50 A/g, that the specific capacitance retention of 91% can be obtained over 100,000 cycles, corresponding to an average specific capacitance loss of only 0.00009% per cycle. Furthermore, the mechanisms involved were clarfied by systematical characterizations. This work will provide new insights for enhancing the supercapacitor performance of MXene-based materials by surface chemistry modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.