Abstract

Iodine-doped graphene oxide is attracting great attention as fuel cell (FC) electrocatalysts with a high activity for the oxygen reduction reaction (ORR). However, most of the reported preparation techniques for iodine-doped graphene (I/rGO) could be transposed into practice as multiple step procedures, a significant disadvantage for scale-up applications. Herein, we describe an effective, eco-friendly, and fast technique for synthesis by a microwave-tuned one-stage technique. Structural and morphological characterizations evidenced the obtaining of nanocomposite sheets, with iodine bonded in the graphene matrix. The ORR performance of I/rGO was electrochemically investigated and the enhancement of the cathodic peak was noted. Based on the noteworthy electrochemical properties for ORR activity, the prepared I/rGO can be considered an encouraging alternative for a more economical electrode for fuel cell fabrication and commercialization. In this perspective, the iodine-based catalysts synthesis can be considered a step forward for the metal-free electrocatalysts development for the oxygen reduction reaction in fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.