Abstract

Eight cationic, two‐dimensional metal‐organic frameworks (MOFs) were synthesized in reactions of the group 13 metal halides AlBr3, AlI3, GaBr3, InBr3 and InI3 with the dipyridyl ligands 1,2‐di(4‐pyridyl)ethylene (bpe), 1,2‐di(4‐pyridyl)ethane (bpa) and 4,4’‐bipyridine (bipy). Seven of them follow the general formula 2 ∞[MX2(L)2]A, M=Al, In, X=Br, I, A−=[MX4]−, I−, I3 −, L=bipy, bpa, bpe. Thereby, the porosity of the cationic frameworks can be utilized to take up the heavy molecule iodine in gas‐phase chemisorption vital for the capture of iodine radioisotopes. This is achieved by switching between I− and the polyiodide I3 − in the cavities at room temperature, including single‐crystal‐to‐single‐crystal transformation. The MOFs are 2D networks that exhibit (4,4)‐topology in general or (6,3)‐topology for 2 ∞[(GaBr2)2(bpa)5][GaBr4]2⋅bpa. The two‐dimensional networks can either be arranged to an inclined interpenetration of the cationic two‐dimensional networks, or to stacked networks without interpenetration. Interpenetration is accompanied by polycatenation. Due to the cationic character, the MOFs require the counter ions [MX4]−, I− or I3 − counter ions in their pores. Whereas the [MX4]−, ions are immobile, iodide allows for chemisorption. Furthermore, eight additional coordination polymers and complexes were identified and isolated that elaborate the reaction space of the herein reported syntheses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.