Abstract

A straightforward cross-dehydrogenative coupling approach to incorporate alicyclic amino residues into the structure of model cyclic aldonitrones, 2H-imidazole oxides, is reported. The elaborated C(sp2)-H functionalization is achieved by employing cyclic amines in the presence of the I2-tert-butyl hydroperoxide (TBHP) reagent system. As a result, a series of 19 novel heterocyclic derivatives were obtained in yields of up to 97%. A mechanistic study involving electron paramagnetic resonance spectroscopic experiments allowed the radical nature of the reaction to be confirmed. In particular, the envisioned mechanistic rationale comprises N-iodination of a cyclic amine, followed by N-I bond homolysis of the resulting intermediate and subsequent amination of the nitrone moiety via the newly generated nitrogen-centered radical.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call