Abstract
Unprecedented I2-catalyzed α,α-C(sp3)-H, decarboxylative α-C(sp3)-H, lactonized α-C(sp3)-H, and α,β-C(sp3)-H functionalized 5- and 6-annulation as well as α-C(sp3)-H activated 6-lactonization of primary aliphatic amines are devised under aerobic conditions. The metal-free sustainable strategy was employed for the diverse construction of valuable five-and six-membered polycyclic N,O-heteroaromatics such as oxazoles, 1,4-oxazines, and oxazin-2-one with a rapid reaction rate and high yield. The viability of this mild nonmetallic catalysis is successfully verified through syntheses of labile chiral heterocyclic analogues. In contrast to the common practice, this method is not limited to use of prefunctionalized amines, directing groups (DGs) and/or transient DGs, metal catalysts, and traditional oxidants. The possible mechanistic pathway of the annulation reaction is investigated by control experiments and ESI-MS data collected for a reaction mixture of the ongoing reaction. The synthesized new compounds are potent organic nanobuilding blocks to achieve valuable organic nanomaterials of different sizes, shapes, and dimensions, which are under investigation for the discovery of high-tech devices of innovative organic nanoelectronics and photophysical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.