Abstract

Iodo-transformations using the reagent system I2/H2O2 were studied in the water miscible ionic liquid (IL) 1-butyl-3-methyl imidazolium tetrafluoroborate (bmimBF4) and in water immiscible IL, 1-butyl-3-methyl imidazolium hexafluorophosphate (bmimPF6). Two different forms of H2O2 as mediators of iodination were investigated, namely 30% aq. H2O2 and urea-H2O2 (UHP) in solid form. The role of the oxidant during the course of a reaction could be distinguished based on the amount of reagent required for the most efficient transformation. Two types of iodo-functionalizations through an electrophilic process were observed depending on the structure of the substrates. Whereas ring iodination took place in the case of dimethoxy- and trimethoxy-benzenes, with arylalkyl ketones the alkyl group α to the carbonyl was regioselectively iodinated. The results were further evaluated in comparison with iodination using the reagent system I2/H2O2 in water as medium, and under solvent-free reaction conditions, in terms of efficiency, selectivity, mechanism, and the ‘green’ aspects. The reusability/recycling of water immiscible bmimPF6 was investigated for 1,3,5-trimethoxy benzene (1b), which required a 1/0.5/0.6 molar ratio of substrat/I2/oxidant, and for 1,2,3-trimethoxy benzene (1f), which required a 1/1/1 ratio for complete iodine introduction. In addition, the efficiency of iodination was tested by varying the substrates, and employing the recycled hydrophobic IL bmimPF6.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.