Abstract

Phototheranostics, which combines deep tissue imaging and phototherapy [photodynamic therapy (PDT) and/or photothermal therapy (PTT)] via light irradiation, is a promising strategy to treat tumors. Near-infrared (NIR) cyanine dyes are researched as potential phototheranostics reagents for their excellent photophysical properties. However, the low singlet oxygen generation efficiency of cyanine dyes often leads to inadequate therapeutic efficacy for tumors. Herein, we modified an indocyanine green derivative Cy7 with heavy atom iodine to form a novel NIR dye CyI to improve the reactive oxygen species (ROS) production and heat generation while, at the same time, maintain their fluorescence characteristics for in vivo noninvasive imaging. More importantly, in vitro and in vivo therapeutic results illustrated that CyI could quickly and simultaneously generate enhanced ROS and heat to induce more cancer cell apoptosis and higher inhibition rates in deep HepG2 tumors than other noniodinated NIR dyes upon NIR irradiation. Besides, low toxicity of the resulted iodinated NIR dyes was confirmed by in vivo biodistribution and acute toxicity. Results indicate that this low toxic NIR dye could be an ideal phototheranostics agent for deep tumor treatments. Our study presents a novel approach to achieve the fast-synergistic PDT/PTT treatment in deep tissues.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call