Abstract

InxGa1-xN/GaN solar cells are ideal candidates for use in extreme temperature applications. The conversion efficiency potential of double heterostructure solar cells was investigated at high temperatures using physical simulation. For a targeted working temperature, optimized efficiency lies in a compromise between the absorber bandgap energy determined by In composition and the band offsets at the heterointerface directly correlated with the capability for the photogenerated carriers to cross through the barrier by thermoionic emission. An optimized efficiency of 18% is obtained for an In content of 50% at 400K and decreases down to 10% for an In content of 35% at 500K. As the operating temperature goes higher, the indium content needs to be reduced in order to limit the detrimental effect of increasing intrinsic carrier concentration. The consequence is a decreasing efficiency due to the reduced covered range of the solar spectrum. In the same time, the band offsets are no more a limiting parameter, as there are reduced as the In content decreases, and as higher temperature increases the thermionic transport probability. This result shows the interest of InxGa1-xN/GaN double heterostructure design for high temperatures applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.