Abstract
Conversion of multicolor luminescence is one of desirable goals in study and development of next-generation molecular emitters, whereas involving visible light into the control of the above-mentioned ability has been poorly addressed due to the need of a relatively complicate molecular design. In this work, we present a novel dyad with a linkage of 4-piperazinyl-1,8-naphthalimide and cyanostyryl-modified azulene moiety, upon which the luminescence signal can be orthogonally controlled by protonation and green light irradiation. The superior features of the protonation induced excited state energy alteration, followed by green light driven photoisomerization led to a progressive luminescent color conversion among blue, yellow and green at the single molecular level. This strategy may bring in novel insights for preparing advanced function-integrated optoelectronic materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.