Abstract

Fumonisins comprise a class of carcinogenic mycotoxins produced by Fusarium verticillioides during colonization of maize kernels. In previous work, we identified ZFR1, which is predicted to encode a Zn(II)2Cys6 zinc finger transcription factor required for fumonisin B(1) (FB(1)) production during growth on kernels. In this study, we characterized the role of ZFR1 in colonizing maize kernels and inducing FB(1) biosynthesis. The ZFR1 deletion strain (Deltazfr1) grew approximately 2.5-fold less than the wild-type on endosperm tissue and a variety of other carbon sources, including glucose and amylopectin. However, the Deltazfr1 strain displayed higher alpha-amylase activity and expression of genes involved in starch saccharification than the wild-type, thus indicating that the reduced growth of the Deltazfr1 strain was not due to inhibition of amylolytic enzymes. In the wild-type strain, expression of six genes encoding putative sugar transporters was significantly greater on endosperm tissue than on germ tissue, and expression of at least three of the six genes was negatively affected by disruption of ZFR1. Intriguingly, disruption of FST1 had no effect on growth, kernel colonization or kernel pH but decreased FB(1) production by approximately 82% on maize kernels. Based on these findings, we hypothesize that ZFR1 controls FB(1) biosynthesis by regulating genes involved in the perception or uptake of carbohydrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call