Abstract

VIP36, an intracellular lectin that recognizes high mannose-type glycans (Hara-Kuge, S., Ohkura, T., Seko, A., and Yamashita, K. (1999) Glycobiology 9, 833-839), was shown to localize not only to the early secretory pathway but also to the plasma membrane of Madin-Darby canine kidney (MDCK) cells. In the plasma membrane, VIP36 exhibited an apical-predominant distribution, the apical/basolateral ratio being approximately 2. Like VIP36, plasma membrane glycoproteins recognized by VIP36 were found in the apical and basolateral membranes in the ratio of approximately 2 to 1. In addition, secretory glycoproteins recognized by VIP36 were secreted approximately 2-fold more efficiently from the apical membrane than from the basolateral membrane. Thus, the apical/basolateral ratio of the transport of VIP36-recognized glycoproteins was correlated with that of VIP36 in MDCK cells. Upon overproduction of VIP36 in MDCK cells, the apical/basolateral ratios of both VIP36 and VIP36-recognized glycoproteins were changed from approximately 2 to approximately 4, and the secretion of VIP36-recognized glycoproteins was greatly stimulated. In contrast to the overproduction of VIP36, that of a mutant version of VIP36, which has no lectin activity, was of no effect on the distribution of glycoproteins to apical and basolateral membranes and inhibited the secretion of VIP36-recognized glycoproteins. Furthermore, the overproduction of VIP36 greatly stimulated the secretion of a major apical secretory glycoprotein of MDCK cells, clusterin, which was found to carry at least one high mannose-type glycan and to be recognized by VIP36. In contrast to the secretion of clusterin, that of a non-glycosylated apical-secretion protein, galectin-3, was not stimulated through the overproduction of VIP36. These results indicated that VIP36 was involved in the transport and sorting of glycoproteins carrying high mannose-type glycan(s).

Highlights

  • vesicular integral membrane protein of 36 kDa (VIP36), an intracellular lectin that recognizes high mannose-type glycans (Hara-Kuge, S., Ohkura, T., Seko, A., and Yamashita, K. (1999) Glycobiology 9, 833– 839), was shown to localize to the early secretory pathway and to the plasma membrane of MadinDarby canine kidney (MDCK) cells

  • When immunofluorescence staining was performed after Triton X-100 treatment, which enabled the antibody to permeate through plasma membrane, VIP36 seemed to exist broadly in MDCK cells (Fig. 1d)

  • It has become evident that some specific glycans and intracellular lectins recognizing specific glycans play important roles in intracellular glycoprotein transport [1,2,3,4,5]

Read more

Summary

Introduction

VIP36, an intracellular lectin that recognizes high mannose-type glycans (Hara-Kuge, S., Ohkura, T., Seko, A., and Yamashita, K. (1999) Glycobiology 9, 833– 839), was shown to localize to the early secretory pathway and to the plasma membrane of MadinDarby canine kidney (MDCK) cells. VIP36, an intracellular lectin that recognizes high mannose-type glycans

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call