Abstract

In neurodegenerative diseases, including Parkinson's and Alzheimer's diseases, apoptosis is a common type of cell death, and mitochondria emerge as the major organelle to initiate death cascade. Monoamine oxidase (MAO) in the mitochondrial outer membrane produces hydrogen peroxide by oxidation of monoamine substrates, and induces oxidative stress resulting in neuronal degeneration. On the other hand, a series of inhibitors of type B MAO (MAO-B) protect neurons from cell death. These results suggest that MAO may be involved in the cell death process initiated in mitochondria. However, the direct involvement of MAO in the apoptotic signaling has been scarcely reported. In this paper, we present our recent results on the role of MAO in activating and regulating cell death processing in mitochondria. Type A MAO (MAO-A) was found to bind an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol, and induce apoptosis in dopaminergic SH-SY5Y cells containing only MAO-A. To examine the intervention of MAO-B in apoptotic process, human MAO-B cDNA was transfected to SH-SY5Y cells, but the sensitivity to N-methyl(R)salsolinol was not affected, even though the activity and protein of MAO-B were expressed markedly. MAO-B oxidized dopamine with production of hydrogen peroxide, whereas in control cells expressing only MAO-A, dopamine autoxidation produced superoxide and dopamine-quinone, and induced mitochondrial permeability transition and apoptosis. Rasagiline and other MAO-B inhibitors prevent the activation of apoptotic cascade and induce prosurvival genes, such as bcl-2 and glial cell line-derived neurotrophic factor, in MAO-A-containing cells. These results demonstrate a novel function of MAO-A in the induction and regulation of apoptosis. Future studies will clarify more detailed mechanism behind regulation of mitochondrial death signaling by MAO-A, and bring out new strategies to cure or ameliorate the decline of neurons in neurodegenerative disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.