Abstract

To study the involvement of Treg cells expressing tumor necrosis factor receptor type II (TNFRII) in exerting control of inflammation in experimental models and in the response to anti-TNF treatments in patients with rheumatoid arthritis (RA) or spondyloarthritis (SpA). The role of TNFRII in Treg cells was explored using a multilevel translational approach. Treg cell stability was evaluated by analyzing the methylation status of the Foxp3 locus using bisulfite sequencing. Two models of inflammation (imiquimod-induced skin inflammation and delayed-type hypersensitivity arthritis [DTHA]) were induced in TNFRII-/- mice, with or without transfer of purified CD4+CD25+ cells from wild-type (WT) mice. In patients with RA and those with SpA, the evolution of the TNFRII+ Treg cell population before and after targeted treatment was monitored. Foxp3 gene methylation in Treg cells was greater in TNFRII-/- mice than in WT mice (50% versus 36.7%). In cultured Treg cells, TNF enhanced the expression, maintenance, and proliferation of Foxp3 through TNFRII signaling. Imiquimod-induced skin inflammation and DTHA were aggravated in TNFRII-/- mice (P < 0.05 for mice with skin inflammation and P < 0.0001 for mice with ankle swelling during DTHA compared to WT mice). Adoptive transfer of WT mouse Treg cells into TNFRII-/- mice prevented aggravation of arthritis. In patients with RA receiving anti-TNF treatments, but not those receiving tocilizumab, the frequency of TNFRII+ Treg cells was increased at 3 months of treatment compared to baseline (mean ± SEM 65.2 ± 3.1% versus 49.1 ± 5.5%; P < 0.01). In contrast, in anti-TNF-treated patients with SpA, the frequency of TNFRII+ Treg cells was not modified. TNFRII expression identifies a subset of Treg cells that are characterized by stable expression of Foxp3 via gene hypomethylation, and adoptive transfer of TNFRII-expressing Treg cells ameliorates inflammation in experimental models. Expansion and activation of TNFRII+ Treg cells may be one of the mechanisms by which anti-TNF agents control inflammation in RA, but not in SpA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call