Abstract

Neocortical neuronal circuits are refined by experience during the critical period of early postnatal life. The shift of ocular dominance in the visual cortex following monocular deprivation has been intensively studied to unravel the mechanisms underlying the experience-dependent modification. Synaptic plasticity is considered to be involved in this process. We previously showed in layer 2/3 pyramidal neurons of rat visual cortex that low-frequency stimulation-induced long-term potentiation (LTP) at excitatory synapses, which requires the activation of Ni(2+)-sensitive (R-type or T-type) voltage-gated Ca(2+) channels (VGCCs) for induction, shared a similar age and experience dependence with ocular dominance plasticity. In this study, we examined whether this LTP is involved in ocular dominance plasticity. In visual cortical slices, LTP was blocked by mibefradil, kurtoxin and R-(-)-efonidipine, T-type VGCC blockers, but not by SNX-482, an R-type VGCC blocker, indicating that LTP induction requires T-type VGCC activation. Mibefradil did not affect synaptic transmission even at a dose about 30 times higher than that required for LTP blockade. Therefore, this drug was used to test the effect of T-type VGCC blockade on ocular dominance shift produced by 6 days of monocular deprivation during the critical period using visual evoked potentials (VEPs). Although this monocular deprivation commonly produced both depression of deprived eye responses and potentiation of nondeprived eye responses, only the former change occurred when mibefradil was infused into the visual cortex during monocular deprivation. Mibefradil infusion produced no acute effects on VEPs. These results suggest that T-type VGCC-dependent LTP contributes to the experience-dependent enhancement of visual responses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call