Abstract
BackgroundTrehalose, a non-reducing disaccharide, which involves in the acquisition of various stress tolerance, while hydrogen sulfide (H2S) is considered as a cell signal molecule, but H2S-induced heat tolerance and involvement of trehalose in plants is still unclear.ResultsIn present study, pretreatment with hydrogen sulfide donor sodium hydrosulfide (NaHS) markedly increased the accumulation of endogenous H2S in maize seedlings under normal culture conditions, which in turn improved survival percentage of maize seedlings and mitigated increase in electrolyte leakage and malonaldehyde (MDA) accumulation under heat stress. In addition, treatment with NaHS activated increase in the activity of trehalose-6-phosphate phosphatase (TPP) under normal culture conditions, followed by induced the accumulation of endogenous trehalose, but this accumulation was eliminated by addition of sodium citrate, an inhibitor of TPP. During the process of heat stress, maize seedlings treated with NaHS maintained higher TPP activity and trehalose content than those of control. On the other hand, exogenous application of trehalose also increased the content of endogenous trehalose in maize seedlings under normal culture conditions, alleviated increase in electrolyte leakage and MDA accumulation under heat stress, which in turn improved survival percentage of maize seedlings, and the heat tolerance induced by trehalose was enhanced by exogenous supplement of NaHS, but exogenous trehalose treatment had not significant effect on the accumulation of endogenous hydrogen sulfide in maize seedlings.ConclusionThese data suggest that sodium hydrosulfide pretreatment could improve heat tolerance of maize seedlings and this improvement may be involved in trehalose accumulation by activating TPP activity.Electronic supplementary materialThe online version of this article (doi:10.1186/1999-3110-55-20) contains supplementary material, which is available to authorized users.
Highlights
Trehalose, a non-reducing disaccharide, which involves in the acquisition of various stress tolerance, while hydrogen sulfide (H2S) is considered as a cell signal molecule, but H2S-induced heat tolerance and involvement of trehalose in plants is still unclear
These results illustrated that NaHS-induced heat tolerance of maize seedlings in a concentrationdependent manner may be achieved by accumulating endogenous H2S
The results indicated that exogenously applied trehalose could increase content of endogenous trehalose in coleoptiles under normal conditions (Figure 6A), and alleviated increase in electrolyte leakage in roots and MDA accumulation in coleoptiles of seedlings under heat stress (Figure 7), which in turn improved survival percentage of maize seedlings (Figure 8)
Summary
A non-reducing disaccharide, which involves in the acquisition of various stress tolerance, while hydrogen sulfide (H2S) is considered as a cell signal molecule, but H2S-induced heat tolerance and involvement of trehalose in plants is still unclear. Trehalase is the key enzyme responsible for the hydrolysis of trehalose (Goddijn and van Dun, 1999; Iordachescu and Imai, 2008; Paul et al, 2008; Fernandez et al, 2010; Zhou et al, 2013). In recent years, accumulating evidences showed that trehalose, serving as a signal molecule, plays very important role in plant growth, development and the acquisition of stress tolerance including heat tolerance (Paul et al, 2008; Fernandez et al, 2010). Interaction of hydrogen sulfide (H2S) and trehalose in the acquisition of heat tolerance in plants still remains elusive
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.