Abstract

In our previous studies, we have demonstrated that a stretch of amino-acid sequences identified from Arabidopsis ribosomal S6 kinase 1 (AtS6K1) provided a plant version of the TOS (TOR-signaling) motif, mediating the interaction with the Raptor protein in the TOR (Target of Rapamycin) kinase complex. Here we report the presence of same element in Arabidopsis Autophagy related-13 (AtATG13) protein, which is a key component of the plant autophagy response. Its composition is nearly identical to that found in the AtS6K1 in the five-amino-acid core sequence, and the presence of this five-amino-acid sequence was found to be essential for its interaction with the Raptor protein. A mutant AtATG13 protein lacking this five-amino-acid element conferred an elevated autophagy response and could not effectively phosphorylated by TOR kinase activity, demonstrating its role in mediating the TOR signaling to the components that carry it as a possible TOS motif. A ligand-binding simulation model using the MM-PBSA method indicates that both of the five-amino-acid sequence elements of AtS6K1 and AtATG13 have strong probability of making stable interface with the Raptor binding pocket, corroborating our proposition for this element as the plant TOS motif.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call