Abstract

The ability of four yeast DNA polymerase mutant strains to carry out the repair of DNA treated with MMS was studied. Mutation in DNA polymerase Rev3, as well as the already known mutation in the catalytic subunit of DNA polymerase delta, were both found to lead to the accumulation of single-strand breaks, which indicates defective repair. A double-mutant strain carrying mutations in DNA polymerase delta and a deletion in the REV3 gene had a complete repair defect, both at permissive (23 degrees C) and restrictive (38 degrees C) temperatures, which was not observed in other pairwise combinations of tested polymerase mutants. Other polymerases are not involved in the repair of exogenous DNA methylation damage, since neither mutation in the DNA polymerase epsilon, nor deletion in the DNA polymerase IV (beta70) gene, caused defective repair. The data obtained suggest that DNA polymerases delta and Rev3p are both necessary to perform repair synthesis in the base-excision repair of methylation damage. The results are discussed in the light of current concepts on the role of DNA polymerase Rev3 in mutagenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.