Abstract

Nogo-A is a myelin-associated protein expressed by neurons and myelinating mature oligodendrocytes in the central nervous system. Although most research has focused on the participation of Nogo-A in the prevention of axonal regeneration and plasticity in the adult, little attention has been paid to the putative functions of Nogo-A during embryonic development. Here we examined the general pattern and cell-specific distribution of Nogo-A in the prenatal mouse telencephalon. In addition, we studied the development of the major axon tracts and radial and tangential migration in Nogo-A/B/C knockout mice. The pattern of Nogo-A showed distinct distribution in radial glia and postmitotic neurons, in which it is particularly enriched in developing axons. Similarly, Nogo-A was enriched at the leading process of tangentially migrating interneurons but not detectable in radial migrating neurons. Although a low level of Nogo-A appears to be on the surface of many cortical neurons, most proteins have intracellular localization. In Nogo-deficient background, neurons displayed early polarization and increased branching in vitro, probably reflecting a cell-intrinsic role of Nogo proteins in branching reduction, and early tangential migration was delayed. On the basis of these observations, we propose that Nogo proteins, particularly Nogo-A, are involved in multiple processes during cortical development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call