Abstract

We studied the pathways of macrophage response to lipopolysaccharide (LPS). When mouse macrophages pre-exposed to LPS were restimulated with this agent, reduced tumour necrosis factor-alpha (TNF-alpha) responses (desensitization/endotoxin tolerance) were accompanied by increased (priming) nitric oxide (NO) responses. Priming was also inducible with recombinant interferon-beta (IFN-beta). The requirement of TNF-alpha biosynthesis in the LPS-induced priming was also suggested by the observation that both anti-TNF-alpha serum and pentoxifylline inhibited this effect. However, addition of mouse recombinant TNF-alpha (mrTNF-alpha) did not enhance the priming induced by LPS or IFN-beta, and preincubation with mrTNF-alpha alone, or in association with other cytokines produced by macrophages (interleukin-1 beta, interleukin-6, or leukaemia inhibitory factor), did not induce a priming effect. We found however, that pentoxifylline, which blocked the priming, also decreased the level of membrane-bound TNF-alpha. Furthermore, exposure to compound BB-3103 (a metalloproteinase inhibitor that blocks the processing of membrane-bound TNF-alpha yielding to the secreted cytokine) enhanced the priming effect, the expression of membrane TNF-alpha and the specific binding of LPS. These observations suggest that the membrane form of TNF-alpha is involved in the interaction of LPS with a receptor required for LPS-induced priming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.