Abstract

Extracellular recordings in urethane-anesthetized male rats indicated that electrical stimulation of the subfornical organ (SFO) alters the activity of 54 out of 62 phasically firing neurosecretory neurons in the hypothalamic paraventricular nucleus (PVN); 44 cells demonstrate an increase in excitability; 10 cells display a depression in their activity. In 14 out of 38 PVN cells tested, SFO stimulation-evoked excitations were abolished by pretreatment with the angiotensin II (ANG II) antagonist, saralasin (Sar), in the region of the median preoptic nucleus (MnPO). Inhibitory responses (n = 7) were not affected. Microinjection of ANG II into the region of the SFO produced either a facilitation (n = 28) or no effect (n = 6) on the excitability of phasically active PVN neurosecretory cells and the facilitatory effect of 9 out of 23 cells tested was prevented by pretreatment with Sar in the region of the MnPO. All the PVN cells which had excitatory responses to either electrical (n = 7) or chemical (n = 9) stimulation of the SFO that were blocked following the pretreatment could also be activated by intravenous administration of ANG II. Furthermore, this activation was blocked (n = 10) or attenuated (n = 6) by pretreatment with Sar in the region of the MnPO. These results show an involvement of both the MnPO and the SFO for the regulation of excitability of putative vasopressin (VP)-secreting PVN neurons, and suggest that MnPO neurons sensitive to ANG II may relay activation of SFO neurons by circulating ANG II to putative VP-secreting PVN neurons which result in enhanced excitability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call