Abstract

The complex mechanisms that cells have evolved to meet the challenge of constant exposure to DNA-damaging stimuli, also serve to protect cancer cells from the cytotoxic effects of chemo- and radiotherapy. IGFBPs appear to be involved, directly or indirectly, in some of these protective mechanisms. Activation of p53 is an early response to genotoxic stress, and all six human IGFBP genes have predicted p53 response elements in their promoter and/or intronic regions, at least some of which are functional. IGFBP3 has been extensively characterized as a p53-inducible gene, but in some cases it is suppressed by mutant p53 forms. DNA double-strand breaks (DSBs), induced by radiotherapy and some chemotherapies, potentially lead to apoptotic cell death, senescence, or repair and recovery. DSB damage can be repaired by homologous recombination or non-homologous end-joining (NHEJ), depending on the cell cycle stage, availability of key repair proteins, and other factors. The epidermal growth factor receptor (EGFR) has been implicated in the NHEJ pathway, and EGFR inhibition may inhibit repair, promoting apoptosis and thus improving sensitivity to chemotherapy or radiotherapy. Both IGFBP-3 and IGFBP-6 interact with components of the NHEJ pathway, and IGFBP-3 can facilitate this process through direct interaction with both EGFR and the catalytic subunit of DNA-PK. Cell fate after DNA damage may in part be regulated by the balance between the sphingolipids ceramide and sphingosine-1-phosphate, and IGFBPs can influence the production of both lipids. A better understanding of the involvement of IGFBPs in the DNA damage response in cancer cells may lead to improved methods of sensitizing cancers to DNA-damaging therapies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.