Abstract

Searching for a target object in a cluttered visual scene requires active visual attention if the target differs from distractors not by elementary visual features but rather by a feature conjunction. We used functional magnetic resonance imaging (fMRI) in human subjects to investigate the functional neuroanatomy of attentional mechanisms employed during conjunction search. In the experimental condition, subjects searched for a target defined by a conjunction of colour and orientation. In the baseline condition, subjects searched for a uniquely coloured target, regardless of its orientation. Eye movement recordings outside the scanner verified subjects' ability to maintain fixation during search. Reaction times indicated that the experimental condition was attentionally more demanding than the baseline condition. Differential activations between conditions were therefore ascribed to top-down modulation of neural activity. The frontal eye field, the ventral precentral sulcus and the following posterior parietal regions were consistently activated: (i) the postcentral sulcus; (ii) the posterior; and (iii) the anterior part of the intraparietal sulcus; and (iv) the junction of the intraparietal with the transverse occipital sulcus. Parietal regions were spatially distinct and displayed differential amplitudes of signal increase with a maximal amplitude in the posterior intraparietal sulcus. Less consistent activation was found in the lateral fusiform gyrus. These results suggest an involvement of the human frontal eye field in covert visual selection of potential targets during search. These results also provide evidence for a subdivision of posterior parietal cortex in multiple areas participating in covert visual selection, with a major contribution of the posterior intraparietal sulcus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call