Abstract

Corticotropin-releasing factor (CRF) is considered to be a main adrenocorticotropin-releasing factor in vertebrates. In non-mammalian species, CRF and related peptides cause the release of thyroid-stimulating hormone (TSH) from the anterior pituitary. The actions of CRF peptides are mediated by two G protein coupled receptors (CRF 1 and CRF 2) that have different ligand specificities. Using ligands that bind preferentially or selectively to the CRF 2 we tested the hypothesis that TSH release by the amphibian pituitary gland is mediated by the CRF 2. Injection of frog CRF, urocortin 1 or the CRF 2-specific ligand urocortin 3 all produced significant, acute increases (by 2 h) in plasma thyroxine concentration in prometamorphic tadpoles. Chronic injections of CRF peptides accelerated tadpole metamorphosis, and the peptides with the highest affinity for the CRF 2 (urocortin 1 and sauvagine) had the greatest potency. Ligands selective for the CRF 2 (frog urocortin 3, mouse urocortins 2 and 3) all accelerated tadpole metamorphosis. We then tested frog urocortins 1 and 3, mouse urocortin 2 and sauvagine for their TSH-releasing activity using dispersed frog anterior pituitary cells in culture. All of the peptides tested markedly enhanced the release of TSH. Secretagogue-induced TSH release was completely blocked by the general CRF receptor antagonist astressin or the CRF 2-specific antagonist antisauvagine-30. Conversely, the type 1 CRF receptor-specific antagonist antalarmin had no effect on TSH secretion. Our results support the hypothesis that CRF-induced TSH release by the amphibian pituitary gland is mediated by the CRF 2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.