Abstract

During maintenance of smooth pursuit eye movements, the brain must keep track of pursuit velocity to reconstruct target velocity from motion of retinal images. Although a recent study showed that corollary discharge signals through the thalamus to the cortex are used for internal monitoring of saccades, it remains unknown whether signals in the thalamus also contribute to monitoring and on-line regulation of smooth pursuit. The present study sought possible roles of the thalamocortical pathways in pursuit by recording activities of single thalamic neurons and by analyzing the effects of local inactivation. Data showed that many neurons in the ventrolateral thalamus exhibited directional modulation during pursuit. Most neurons discharged before or during initiation of pursuit, and the firing rate was proportional to the speed of target motion in a preferred direction. When the tracking target was extinguished briefly during maintenance of pursuit, these neurons continued firing, indicating that they carried extra-retinal, eye movement signals. The majority of neurons showed no change in activity around the time of small catch-up saccades during pursuit but responded transiently to large (16 degrees) memory-guided saccades in the preferred pursuit direction. Local inactivation of the recording sites did not alter pursuit latency but reduced eye velocity modestly during initiation and maintenance of ipsiversive pursuit. The results suggest that the central thalamus lies within pathways that regulate and monitor smooth pursuit eye movements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.