Abstract

The major outer-membrane protein, OprF, from the psychrotrophic bacterium Pseudomonas fluorescens undergoes a reduction of its conductance value (from 250 pS to 80 pS) when the growth temperature is shifted from 28°C to 8°C. The involvement of changes in tertiary or quaternary structure in this behaviour, was implied by enzymatic digestion experiments in which OprFs purified from 8°C and 28°C cultures showed different accessibility to pronase. Resistant proteolytic fragments of 19 kDa, obtained from both OprF preparations, were identified as the N-terminal half of the native protein. These 19 kDa fragments induced ion channels in planar lipid bilayers with similar conductance values of 65–75 pS in 1 M NaCl, in contrast to the native proteins. Thus, the C-terminal part of the protein is required for the growth temperature-dependent modulation of OprF channel-forming properties. LPS was not detected on the proteolytic fragments while it was found in similar amounts on the native OprFs. These results suggest the LPS/porin association occurs through the C-terminal part of the porin. Radiolabelling experiments showed different phosphorylation levels of LPS for 8°C and 28°C cultures. Thus, in response to growth temperature, the structural modification of the LPS could be associated to the modulation of OprF pore size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.