Abstract

Oxygen therapy is a common treatment in neonatal intensive care units, but long-term continuous hyperoxia ventilation may induce acute lung injury (ALI). Gasdermin D (GSDMD)-mediated pyroptosis participates in various diseases including ALI, but the role of GSDMD in hyperoxia-induced ALI is yet understood. Here, we showed a significant increase in GSDMD after exposure to high oxygen. To elucidate the molecular mechanisms involved in GSDMD regulation, we identified the core promoter of GSDMD, −98 ~ −12 bp relative to the transcriptional start site (TSS). The results of mutational analysis, overexpression or siRNA interference, EMSA and ChIP demonstrated that E2F4 and TFAP2A positively regulate the transcriptional activity of the GSDMD by binding to its promoter. However, only TFAP2A showed a regulatory effect on the expression of GSDMD. Moreover, TFAP2A was increased in the lung tissues of rats exposed to hyperoxia and showed a strong linear correlation with GSDMD. Our results indicated that TFAP2A positively regulates the GSDMD expression via binding to the promoter region of GSDMD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call