Abstract
Homocitrate synthase (HCS) catalyzes the aldol condensation of α-ketoglutarate and acetyl coenzyme A to form homocitrate, which is the first committed step of lysine biosynthesis through the α-aminoadipate pathway in yeast, fungi, and some prokaryotes. We determined the crystal structure of a truncated form of HCS from a hyperthermophilic acidophilic archaeon, Sulfolobus acidocaldarius, which lacks the RAM (Regulation of amino acid metabolism) domain at the C terminus serving as the regulatory domain for the feedback inhibition by lysine, in complex with α-ketoglutarate, Mg2+ , and CoA. This structure coupled with mutational analysis revealed that a subdomain, subdomain II, connecting the N-terminal catalytic domain and C-terminal RAM domain is involved in the recognition of acetyl-CoA. This is the first structural evidence of the function of subdomain II in the related enzyme family, which will lead to a better understanding of the catalytic mechanism of HCS. DATABASES: Structural data are available in the RCSB PDB database under the accession number 6KTQ.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.