Abstract

In higher vertebrates, considerable progress has been made in understanding the endocrine regulation of puberty; however, in teleosts, the regulatory mechanisms of spermatogenesis during the first annual cycle remain unclear. The present study was conducted to understand the regulatory mechanisms of spermatogenesis throughout the different stages of the first spermatogenic cycle and to check the ability of various steroids and hormones to induce in vitro spermatogonial proliferation in Japanese huchen (Hucho perryi ). The results indicate that the serum level of 11-ketotestosterone (11-KT) was positively associated with germ cell type; the level first began to rise with the appearance of late-type B spermatogonia and continued to increase gradually throughout the active spermatogenic stages and spermiogenesis, reaching a peak value 2 wk before spawning, and then declined. During the spermatogenic stages, the serum concentration of 17alpha,20beta-dihydroxy-4-pregnen-3-one (17alpha,20beta-DP) was undetectable. Only a small peak was detected with the appearance of spermatocytes and spermatids, and at the time of spawning, the level increased dramatically, reaching its maximum value with the onset of milt production. Despite the high variation in serum levels of 17beta-estradiol (E2) both between months and among the individuals, E2 was found during the whole reproductive cycle. From these results, we concluded that 1) 11-KT is necessary for the initiation of spermatogenesis and sperm production, and it probably plays a role in spermiation, 2) 17alpha,20beta-DP is essential for the final maturation stage, could play a significant role in the mitosis phase and meiosis process, and probably participates in the regulation of spawning behavior, and 3) estrogen is an indispensable male hormone that plays a physiological role in some aspects of testicular functions, especially during the mitotic phase. The three steroids were also able to induce DNA synthesis, spermatogonial renewal, and/or spermatogonial proliferation in vitro.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.