Abstract

The roles of serum mannan binding protein (MBP) and the mannose receptor in the cellular uptake of mannosylated liposomes (Man-liposomes) by macrophages were studied. Man-liposomes were prepared by incorporating cholesten-5-yloxy-N-(4-((1-imino-2-β-D-thiomannosylethyl)amino)butyl)formamide (Man-C4-Chol) into small unilamellar long circulating liposomes consisting of cholesterol (Chol) and distearoyl phosphatidylcholine (DSPC). In the in vitro cellular uptake study with cultured mouse peritoneal macrophages, [3H]Man-liposomes were taken up to a great extent, whereas no significant uptake was observed for [3H]cholesterol and DSPC liposomes without Man-C4-Chol (Bare-liposomes). The uptake of [3H]Man-liposomes was dose- and temperature-dependent and inhibited by an excess of mannosylated bovine serum albumin, suggesting their specific uptake via membrane mannose receptor-mediated endocytosis. Furthermore, it was demonstrated that 111In-MBP binds strongly to Man-liposomes based on the recognition of Man-C4-Chol and markedly enhanced their uptake by macrophages. These results are supported by confocal laser microscopic images. In addition, in vivo hepatic uptake of 111In-MBP was enhanced by Man-liposomes. On the other hand, the uptake of Man-liposomes was significantly reduced by preincubation with serum and further with MBP-depleted serum suggesting inhibitory effects of serum proteins such as albumin on mannose receptor-mediated endocytosis. The involvement of serum-type MBP and membrane mannose receptors in the uptake of Man-liposomes is thus suggested.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call