Abstract

Ethnopharmacology relevanceGinsenoside Rb1, a 20 (S)-protopanaxadiol, is a major active ingredient of Panax ginseng C.A. Meyer, which as the King of Chinese herbs, has been wildly used for the treatment of central nervous system diseases. Previous studies have shown that 20 (S)-protopanaxadiol possesses a novel antidepressant-like effect in the treatment of depression, whereas ginsenoside Rb1 in depression has been rarely reported. Aim of the reviewThe present study was to investigate the antidepressant-like effect of ginsenoside Rb1 and its relevant mechanisms. Materials and methodsThe whole experiment was divided into two parts: one part we examined the antidepressant-like effect of ginsenoside Rb1 with open-field test (OFT), tail suspension test (TST), forced swim test (FST), 5-HTP induced head-twitch and reserpine response in mice, another part we used chronic unpredicted mild stress (CUMS) model to further explore the antidepressant-like effect of ginsenoside Rb1 with caffeine, fluoxetine and p-Chlorophenylalanine (PCPA) in rats. Furthermore, the levels of monoamine neurotransmitters of NE, 5-HT, DA and their metabolites 5-HIAA, DOPAC, HVA were all measured by ELISA kits after the CUMS protocol. ResultsOur data indicated that 7 days treatment with ginsenoside Rb1 (4, 8, 10mg/kg, p.o.) significantly decreased immobility time in the FST and TST in mice, and played important roles in mice which were induced by 5-HTP (200mg/kg, i.p.) and reserpine (4mg/kg, i.p.). On the basis of CUMS model, 21 days treatment with ginsenoside Rb1 not only had effective interactions with caffeine (5mg/kg, i.p.), fluoxetine (1mg/kg, i.p.) and PCPA (100mg/kg, i.p.), but also significantly up-regulated the 5-HT, 5-HIAA, NE and DA levels in CUMS rats’ brain, whereas HVA and DOPAC had no significant difference. Moreover, there was no alteration in spontaneous locomotion in any experimental group. ConclusionsThese results suggest that ginsenoside Rb1 exhibits significant antidepressant-like effect in behavioral tests, chronic animal model and drug interactions, its mechanisms mainly mediated by central neurotransmitters of serotonergic, noradrenergic and dopaminergic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call