Abstract

Doxorubicin (Dox) is widely used in cancer therapy, but the clinical application is limited by its cardiotoxicity. The underlying mechanism of Dox-induced cardiotoxicity remains unclear. Present study aimed to evaluate the role of NLRP3 inflammasome in Dox-induced cardiotoxicity. The NLRP3 inflammasome was activated in the myocardium of Dox-treating (5mg/kg, once every other day, cumulative dosage to 15mg/kg and sacrificed after 2days of last Dox injection) C57BL/6 mice as shown by the up-regulation of NLRP3 and Caspase-1 p20. Dox (1μM for 48h) induced the apoptosis of H9c2 cells and primary cardiomyocytes concomitantly with up-regulation of NLRP3, ASC and Caspase-1 p20 expressions, as well as the increased IL-1β secretion, suggesting the activation of NLRP3 inflammasome. These effects of Dox on H9c2 cells and primary cardiomyocytes can be reversed by MCC950, a specific inhibitor of NLRP3. In view of the key role of ROS on the Dox-induced cardiotoxicity, the relationship between ROS and NLRP3 was further investigated. The ROS level was increased in myocardium, H9c2 cells and primary cardiomyocytes after treating with Dox. Decreasing ROS level by NAC can inhibit the NLRP3 inflammasome activation, secretion of IL-1β and apoptosis in Dox-treating H9c2 cells and primary cardiomyocytes. Collectively, this study reveals a crucial role of ROS/NLRP3-associated inflammasome activation in Dox-induced cardiotoxicity, and NLRP3 inflammasome may represent a new therapeutic target for Dox-induced cardiotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.