Abstract

Reactive microglia clustering around amyloid plaques in brain is a histopathological feature of Alzheimer's disease (AD) and reflects the contribution of neuroinflammation in AD pathogenesis. β-Amyloid peptide (Aβ) has been shown to induce a range of microglial responses including chemotaxis, cytotoxicity and inflammation, but the underlying mechanism is poorly understood. Considering the fundamental role of RhoA/ROCK signaling in cell migration and its broad implication in AD and neuroinflammation, we hypothesized that RhoA/ROCK signaling might be involved in Aβ-induced microglial responses. From in vivo mouse models including APP/PS1 transgene and fibrillar Aβ stereotactic injection, we observed the elevated expression level of RhoA in reactive microglia. Through a series in vitro cell migration, cytotoxicity and biochemistry assays, we found that RhoA/ROCK signaling plays an essential role in Aβ-induced responses of microglial BV2 cells. Small molecular agents Fasudil and Y27632 showed prominent beneficial effects, which implies the therapeutic potential of RhoA/ROCK signaling inhibitors in AD treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call