Abstract
Diesel exhaust particles (DEP) induce a proinflammatory response in human bronchial epithelial cells (16HBE) characterized by the release of proinflammatory cytokines after activation of transduction pathways involving MAPK and the transcription factor NF-kappaB. Because cellular effects induced by DEP are prevented by antioxidants, they could be mediated by reactive oxygen species (ROS). Using fluorescent probes, we detected ROS production in bronchial and nasal epithelial cells exposed to native DEP, organic extracts of DEP (OE-DEP), or several polyaromatic hydrocarbons. Carbon black particles mimicking the inorganic part of DEP did not increase ROS production. DEP and OE-DEP also induced the expression of genes for phase I [cytochrome P-450 1A1 (CYP1A1)] and phase II [NADPH quinone oxidoreductase-1 (NQO-1)] xenobiotic metabolization enzymes, suggesting that DEP-adsorbed organic compounds become bioavailable, activate transcription, and are metabolized since the CYP1A1 enzymatic activity is increased. Because NQO-1 gene induction is reduced by antioxidants, it could be related to the ROS generated by DEP, most likely through the activation of the stress-sensitive Nrf2 transcription factor. Indeed, DEP induced the translocation of Nrf2 to the nucleus and increased protein nuclear binding to the antioxidant responsive element. In conclusion, we show that DEP-organic compounds generate an oxidative stress, activate the Nrf2 transcription factor, and increase the expression of genes for phase I and II metabolization enzymes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Lung Cellular and Molecular Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.