Abstract

Ralstonia solanacearum causes a destructive disease called "bacterial wilt" in numerous plant species. Its virulence is controlled by the transcriptional regulator PhcA, the activity of which is, in turn, regulated in a cell-density dependent manner, termed quorum sensing. We herein described the identification and characterization of ralfuranones J-L, new PhcA-regulated secondary metabolites, and the known derivatives, ralfuranones A and B, from R. solanacearum strain OE1-1. Their structures were determined by spectroscopic and chemical methods. These ralfuranones were also detected in vascular exudates from host plants infected with OE1-1. Deletion of ralA, which encodes an enzyme for ralfuranone biosynthesis, reduced the virulence of OE1-1 in tomato plants. Virulence was restored by complementation of the ralA gene. The results suggest that ralfuranones play important roles in the virulence of OE1-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.