Abstract

We have investigated the characteristics of platelet-activating factor (PAF)-stimulated protein tyrosine phosphorylation in rabbit platelets and its relationship to pp60c-src. 32P-Labeled platelets were challenged with PAF (10(-7) M) for 15 s, the reaction was killed by lysis at 4 degrees C, and samples were loaded onto a phosphotyrosine monoclonal antibody (Tyr(P)-mAb)-agarose column. The column was eluted with 10 mM phenyl phosphate, and the fractions were collected. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis, followed by autoradiography of the column fractions, showed that PAF increased the radioactivity of about a dozen protein bands with predominant ones of approximate molecular masses of 50, 60, 71, 82, and 300 kDa. When Tyr(P)-mAb-agarose column fractions were subjected to immunoblotting with pp60v-src mAb, it was observed that PAF treatment increased the reactivity of 50- and 60-kDa protein species. Immunoprecipitation with pp60v-src mAb further confirmed that PAF treatment increased phosphorylation of the 60- and 50-kDa proteins. Polyclonal antibody to G-protein (alpha-subunit) did not exhibit any reactivity to the column fractions and thus ruled out this protein as substrate for the tyrosine kinase. We next attempted to localize the pp60c-src. Platelet membrane particulate and cytosol fractions were separated from control and PAF-treated platelets, and it was observed that the immunoreactivity to pp60v-src mAb dramatically increased in the particulate membrane fraction from PAF-treated platelets. A concomitant decrease in the immunoreactivity in the cytosol fraction of PAF-treated platelets was also noted. It is concluded that PAF stimulates phosphorylation of pp60c-src tyrosine kinase and causes its rapid translocation from cytosol to membranes in rabbit platelets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.