Abstract
Stress-induced neural injuries are closely linked to the pathogenesis of various neuropsychiatric disorders and psychosomatic diseases. We and others have previously demonstrated certain protective effects of epigallocatechin-3-gallate (EGCG) in stress-induced cerebral impairments, but the underlying protective mechanisms still remain poorly elucidated. Here we provide evidence to support the possible involvement of PKCα and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathways in EGCG-mediated protection against restraint stress-induced neural injuries in rats. In both open-field and step-through behavioral tests, the restraint stress-induced neuronal impairments were significantly ameliorated by administration of EGCG or green tea polyphenols (GTPs), which was associated with a partial restoration of normal plasma glucocorticoid, dopamine and serotonin levels. Furthermore, the stress-induced decrease of PKCα and ERK1/2 expression and phosphorylation was significantly attenuated by EGCG and to a less extent by GTP administration. Additionally, EGCG supplementation restored the production of adenosine triphosphate (ATP) and the expression of a key regulator of cellular energy metabolism, the peroxisome proliferators-activated receptor-γ coactivator-1α (PGC-1α), in stressed animals. In conclusion, PKCα and ERK1/2 signaling pathways as well as PGC-1α-mediated ATP production might be involved in EGCG-mediated protection against stress-induced neural injuries.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.