Abstract

To investigate the role of hepatocyte growth factor (HGF) in cholangiocarcinoma (CCA) cell invasiveness and the mechanisms underlying such cellular responses. Effects of HGF on cell invasion and motility were investigated in two human CCA cell lines, HuCCA-1 and KKU-M213, using Transwell in vitro assay. Levels of proteins of interest and their phosphorylated forms were determined by Western blotting. Localization of E-cadherin was analyzed by immunofluorescence staining and visualized under confocal microscope. Activities of matrix degrading enzymes were determined by zymography. Both CCA cell lines expressed higher Met levels than the H69 immortalized cholangiocyte cell line. HGF induced invasion and motility of the cell lines and altered E-cadherin from membrane to cytoplasm localization, but did not affect the levels of secreted matrix metalloproteinase (MMP)-2, MMP-9 and urokinase plasminogen activator, key matrix degrading enzymes involved in cell invasion. Concomitantly, HGF stimulated Akt and extracellular signal-regulated kinase (ERK)1/2 phosphorylation but with slightly different kinetic profiles in the two cell lines. Inhibition of the phosphoinositide 3-kinase (PI3K)/Akt pathway by the PI3K inhibitor, LY294002, markedly suppressed HGF-stimulated invasion of both CCA cell lines, and inhibition of the ERK pathway by U0126 suppressed HGF-induced invasion of the KKU-M213 cell line but had a moderate effect on HuCCA-1 cells. These data indicate that HGF promotes CCA cell invasiveness through dys-localization of E-cadherin and induction of cell motility by distinct signaling pathways depending on cell line type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call