Abstract

Depolarization-evoked increases in intraterminal free Ca2+ are required for the induction of neurotransmitter release from nerve terminals. Although the mechanisms that regulate the voltage-induced accumulation of presynaptic Ca2+ remain obscure, there is evidence that the phospholipase-dependent accumulation of arachidonic acid, or its metabolites, may be involved. Therefore, fura-2 loaded hippocampal mossy fiber nerve endings were used to investigate the relationships between membrane depolarization, lipid metabolism and presynaptic Ca2+ availability. It was observed that depolarization of the nerve terminals with KCl induced an increase in intraterminal free calcium that was inhibited more than 90% by a combination of voltage-sensitive Ca2+ channel blockers. In addition, the K(+)-dependent effects on Ca2+ concentrations were attenuated in the presence of phospholipase A2 inhibitors, but were mimicked by the phospholipase A2 activator melittin and exogenous arachidonic acid. Both the melittin- and arachidonic acid-induced increases in presynaptic Ca2+ were reduced by voltage-sensitive Ca2+ channel blockers. The stimulatory effects of arachidonic acid appeared to be independent of its further metabolism to prostaglandins. In fact, inhibition of either cyclooxygenase or lipoxygenase pathways resulted in a potentiation of the depolarization-evoked increase in intraterminal free Ca2+. From these results, we propose that some portion of the depolarization-evoked increase in intraterminal free calcium depends on the activation of phospholipase A2 and the subsequent accumulation of unesterified arachidonic acid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call