Abstract
Cell surface-exposed phosphatidylserine (PS) represents a signal for macrophage recognition and cell phagocytosis. This study examines PS exposure and susceptibility to erythrocyte phagocytosis in patients with chronic uremia in an attempt to assess the possible pathogenic mechanism behind cell removal in a condition associated with shortened erythrocyte life. Both PS-expressing erythrocytes and erythrophagocytosis (human monocyte-derived macrophages ingesting one or more erythrocytes) were significantly increased in uremic patients compared with healthy controls. Phagocytosed uremic erythrocytes appeared intact, suggesting they were identified before lysis through some surface change recognized by the macrophages. The degree of phagocytosis was markedly greater for PS-positive than PS-negative fluorescence-activated cell sorter (FACS)-sorted uremic erythrocytes. A significant correlation (r = 0.655) was found between the percentage of PS-expressing red blood cells (RBCs) and the percentage of phagocytosing macrophages in uremic patients. Reconstitution experiments showed the ability of uremic plasma to promote both PS exposure and erythrophagocytosis, the latter without direct interaction with the macrophage population. Phagocytosis of uremic erythrocytes was strongly inhibited when the macrophages were preincubated with glycerophosphorylserine (GPS), a structural derivative of PS, but this was not the case with the equivalent derivative of phosphatidylethanolamine, glycerophosphorylethanolamine. This inhibition appeared to be specific because GPS failed to inhibit the phagocytosis of opsonized uremic erythrocytes that occurs through an Fc receptor-mediated pathway. These findings suggest that a PS-recognition mechanism may promote the susceptibility of uremic RBCs to phagocytosis and thus be involved in the shortened erythrocyte life span of uremia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.