Abstract

Aminopeptidase B (APB, EC 3.4.11.6) preferentially hydrolyzes the N-terminal basic amino acids of synthetic and peptide substrates and requires a physiological concentration of NaCl for optimal activity. In this study, we used site-directed mutagenesis and molecular modeling to search for an amino acid residue that is critical for the enzymatic properties of human APB. Substitution of Phe297 with Tyr caused a significant decrease in hydrolytic activity toward synthetic and peptide substrates as well as chloride anion sensitivity. Molecular modeling suggests that Phe297 contributes to the construction of the substrate pocket of APB, which is wide enough to hold a chloride anion and allow the interaction of Gln169 with the N-terminal Arg residue of the substrate through bridging with the chloride anion. These results indicate that Phe297 is crucial for the optimal enzymatic activity and chloride anion sensitivity of APB via formation of the optimal structure of the catalytic pocket.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.