Abstract

Fibromyalgia is a painful disorder of unknown aetiology that presents activation and recruitment of innate immune cells, including mast cells. Efforts have been made to understand its pathogenesis to manage it better. Thus, we explored the involvement of peripheral mast cells in an experimental model of fibromyalgia induced by reserpine. Reserpine (1 mg/kg) was subcutaneously (s.c.) injected once daily in the back of male Swiss mice for three consecutive days. We analysed mechanical and cold allodynia, muscle fatigue and number of mast cell in plantar tissue. The fibromyalgia induction produced mast cell infiltration (i.e., mastocytosis) in the mice's plantar tissue. The depletion of mast cell mediators with the compound 48/80 (0.5–4 mg/kg, intraperitoneal (i.p.)) or the mast cell membrane stabilizer ketotifen fumarate (10 mg/kg, oral route (p.o.) widely (80–90 %) and extensively (from 1 up to 10 days) prevented reserpine-induced mechanical and cold allodynia and muscle fatigue. Compound 48/80 also prevented the reserpine-induced mastocytosis. Finally, we demonstrated that PAR-2, 5-HT2A, 5-HT3, H1, NK1 and MrgprB2 receptors, expressed in neuronal or mast cells, seem crucial to mediate fibromyalgia-related cardinal symptoms since antagonists or inhibitors of these receptors (gabexate (10 mg/kg, s.c.), ENMD-1068 (10 mg/kg, i.p.), ketanserin (1 mg/kg, i.p.), ondansetron (1 mg/kg, p.o.), promethazine (1 mg/kg, i.p.), and L733,060 (5 mg/kg, s.c.), respectively) transiently reversed the reserpine-induced allodynia and fatigue. The results indicate that mast cells mediate painful and fatigue behaviours in this fibromyalgia model, representing potential therapy targets to treat fibromyalgia syndrome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call