Abstract

Platelet-rich plasma contains high concentrations of growth factors that stimulate proliferation and migration of various cell types. Earlier experiments demonstrated that local platelet-rich plasma administration activates Schwann cells to improve axonal regeneration at a transected peripheral nerve lesion. However, the optimal concentration of human platelet-rich plasma for activation of human Schwann cells has not been determined, and mechanisms by which platelet-rich plasma activates Schwann cells remain to be clarified. Human Schwann cells were cultured with various concentrations of platelet-rich plasma in 5% fetal bovine serum/Dulbecco's Modified Eagle Medium. Cell viability, microchemotaxis, flow cytometry, and quantitative real-time polymerase chain reaction assays were performed to assess proliferation, migration, cell cycle, and neurotrophic factor expression of the human Schwann cells, respectively. Human Schwann cells were co-cultured with neuronal cells to assess their capacity to induce neurite extension. Neutralizing antibodies for platelet-derived growth factor-BB (PDGF-BB) and insulin-like growth factor-1 (IGF-1) were added to the culture to estimate contribution of these cytokines to human Schwann cell stimulation by platelet-rich plasma. An addition of platelet-rich plasma at 5% strongly elevated proliferation, migration, and neurotrophic factor production of human Schwann cells. Both PDGF-BB and IGF-1 may be involved in mitogenic effect of platelet-rich plasma on human Schwann cells, and PDGF-BB may also play an important role in the migration-inducing effect of platelet-rich plasma. Neutralization of both PDGF-BB and IGF-1 cancelled the promoting effect of platelet-rich plasma on neurite-inducing activity of human Schwann cells. This study may suggest the optimal concentration of platelet-rich plasma for human Schwann cell stimulation and potential mechanisms underlying the activation of human Schwann cells by platelet-rich plasma, which may be quite useful for platelet-rich plasma therapy for peripheral nerve regeneration. Therapeutic, V.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call