Abstract

The focus of the present study is on the relationships between illusory and non-illusory auditory perception analyzed at a biological level. To this aim, we investigate neural mechanisms underlying the Deutsch's illusion, a condition in which both sound identity ("what") and origin ("where") are deceptively perceived. We recorded magnetoencephalogram from healthy subjects in three conditions: (a) listening to the acoustic sequence eliciting the illusion (ILL), (b) listening to a monaural acoustic sequence mimicking the illusory percept (MON), and (c) listening to an acoustic sequence similar to (a) but not eliciting the illusion (NIL). Results show that the areas involved in the illusion were the Heschl's gyrus, the insular cortex, the inferior frontal gyrus, and the medial-frontal gyrus bilaterally, together with the left inferior-parietal lobe. These areas belong to the two main auditory streams known as the what and where pathways. The neural responses there observed indicate that the sound sequence eliciting the illusion is associated to larger activity at early and middle latencies and to a dynamic lateralization pattern net in favor of the left hemisphere. The present findings extend to illusory perception the well-known what-where auditory processing mechanism, especially as regards tardy latency activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.