Abstract

Strain Deinococcus irradiatisoli 17bor-2 was isolated from a soil sample exposed to γ radiation at Seoul Women's University, Republic of Korea. The genus Deinococcus is a Gram-negative, coccus-shaped, and extremophilic bacterium, well renowned as being a radiation-resistant bacterium. Therefore, the mechanism behind the resistance to radiation and the gene responsible for the resistance could be helpful for detailed experimental studies with biotechnological applications. To study the involvement of genes in UV radiation resistance in strain 17bor-2, the genomic DNA of the strain was sequenced and constructed using the Pacific Biosciences RS II system. In addition, the complete genome sequence of strain 17bor-2 was annotated and interpreted using the Genomes-Expert Review (IMG-ER) system, along with Prodigal and JGI GenePRIMP analysis. The genome analysis of strain 17bor-2 revealed evidence of excinuclease UvrABC genes, which are key enzymes in the nucleotide excision repair (NER) mechanism, as well as genes from the recA-dependent and recQ pathways. The genome of strain Deinococcus irradiatisoli 17bor-2 was a circular chromosome comprising 3,052,043 bp with a GC content of 67.0%, including 2911 coding sequences (CDs), 49 tRNA genes, and 9 rRNA genes. In addition, their complete genome sequence annotation features provided evidence that radiation resistance genes play a central part in adaptation against extreme environmental conditions. In recent decades, excision repair genes have been indicated in considerable detail for both prokaryote and eukaryote resistance against UV-C radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call