Abstract
Epileptic seizure is phenomenon of abnormal synchronous neuronal discharge of a set of neurons in brain as a result of neuronal excitation. Evidence shows the nitric oxide (NO) involvement in neuronal excitability. Moreover, the role of cyclic guanosine monophosphate (cGMP) activation in seizure pathogenesis is well-established. Sumatriptan is a selective agonist of 5-Hydroxytryptamine1B/D auto-receptor, has been reassessed for its neuroprotection. This study was aimed to explore the anticonvulsant effect of sumatriptan through possible involvement of NO-cGMP pathway in mice. For this purpose, the protective effect of sumatriptan on PTZ-induced clonic seizure threshold (CST) was measured using NO-cGMP pathway inhibitors including N(G)-nitro-L-arginine (L-NNA, 1, 5, and 10 mg/kg), 7-nitroindazole (7-NI, 30, 45, and 60 mg/kg), aminoguanidine (AG, 30, 50, and 100 mg/kg), methylene blue (MB, 0.1, 0.5, and 1 mg/kg) and sildenafil (5, 10, and 20 mg/kg). The involvement of nitrergic system was further confirmed by measurement of nitrite levels by Griess reaction. The gene expression of neuronal nitric oxide synthase (nNOS) and subunits of soluble guanylyl cyclase (sGC) was studied using qRT-PCR analysis. Acute administration of sumatriptan (1.2 and 0.3 mg/kg) in combination with subeffective doses of NOS, sGC, and phosphodiesterase 5 inhibitors significantly reversed the PTZ-induced CST (P ≤ 0.001). The nitrite level in prefrontal cortex was significantly attenuated by sumatriptan (P ≤ 0.01). Furthermore, sumatriptan downregulated the PTZ-induced mRNA expression of nNOS (P ≤ 0.01), α1 (P ≤ 0.001), α2 (P ≤ 0.05), and β1 (P ≤ 0.05) genes in cerebral cortex of mice. In conclusion, the anticonvulsant activity of sumatriptan at least, in part, is mediated through inhibiting NO-cGMP pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.