Abstract

Lithium is still the mainstay in the treatment of affective disorders as a mood stabilizer. Lithium also shows some anticonvulsant properties. While the underlying mechanisms of action of lithium are not yet exactly understood, we used a model of clonic seizure induced by pentylenetetrazole (PTZ) in male NMRI mice to investigate whether the anticonvulsant effect of lithium is mediated via NO-cGMP pathway. Injection of a single effective dose of lithium chloride (25 mg/kg) intraperitoneally (i.p.) increased significantly the seizure threshold (P<0.01). The anticonvulsant properties of the effective dose of lithium were prevented by pre-treatment with the per se non-effective doses of L-ARG [the substrate for nitric oxide synthase; NOS] (30 and 50 mg/kg) or sildenafil [a phosphodiesterase 5 inhibitor] (10 and 20 mg/kg). L-NAME [a non-specific NOS inhibitor] (5, 15 and 30 mg/kg), 7-NI [a specific neural NOS inhibitor] (30 and 60 mg/kg) or MB [a guanylyl cyclase inhibitor] (0.5 and 1 mg/kg) augmented the anticonvulsant effect of a sub-effective dose of lithium (10 mg/kg, i.p.). Whereas several doses of aminoguanidine [an inducible NOS inhibitor] (20, 50 and 100 mg/kg) failed to alter the anticonvulsant effect of lithium. Our findings demonstrated that nitric oxide-cyclic GMP pathway could be involved in the anticonvulsant properties of the lithium chloride. In addition, the role of constitutive NOS versus inducible NOS is prominent in this phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call