Abstract
The Nha1 antiporter is involved in regulation of intracellular pH in Saccharomyces cerevisiae. We report that deletion of the NHA1 gene resulted in an increase of cytoplasmic pH in cells suspended in water or acidic buffers. Addition of KCl or NaCl to exponentially growing cells lowered the internal pH but the difference between cells with or without NHA1 was maintained. Addition of KCl to starved cells resulted in much higher alkalinization of cytoplasmic pH in a strain lacking Nha1p compared to the wild-type or Nha1p-overexpressing strains. The H +/K +(Na +) exchange mechanism of Nha1p was confirmed in reconstituted plasma membrane vesicles.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.