Abstract

The cell-cell adhesion molecules, cadherins and nectins, are involved in the formation of adherens junctions. However, involvement of nectins in the corneal endothelium has not yet been established. This study investigated the involvement of nectins in adherens junctions of the corneal endothelium. Nectin and cadherin expression in the corneal endothelium was evaluated by real-time polymerase chain reaction. Colocalization and direct binding of nectin-1 and N-cadherin to anchoring proteins (afadin and β-catenin, respectively) were determined by immunostaining and immunoprecipitation. The effect of afadin and N-cadherin knockdown on apical junctions was evaluated by immunostaining. Real-time polymerase chain reaction confirmed nectin-1, nectin-2, nectin-3, nectin-4, and afadin expression in the corneal endothelium. Immunofluorescence staining showed colocalization of nectin and afadin at the basal side of the tight junction (where adherens junctions typically locate) and immunoprecipitation confirmed direct binding of nectin to afadin. N-cadherin, P-cadherin, VE-cadherin, and OB-cadherin messenger RNAs were expressed in the corneal endothelium. N-cadherin and β-catenin colocalized at the cell-cell border, where they directly bound and formed a cell-cell adhesion complex. N-cadherin knockdown disrupted the normal expression pattern of zonula occludens protein-1 and afadin, but afadin knockdown had no effect on the expression pattern of zonula occludens protein-1 and N-cadherin. We believe this to be the first report of conservation of the nectin-afadin system in the corneal endothelium and its involvement in the formation of adherens junctions. N-cadherin, as a member of the cadherin family, is also essential for the formation and maintenance of cell-cell adhesion mediated by nectins and tight junctions in the corneal endothelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call